Coparison of artificial intelligence methods for predicting compressive strength of concrete
نویسندگان
چکیده
Compressive strength of concrete is an important parameter in design. Accurate prediction compressive can lower costs and save time. Therefore, thecompressive performance artificial intelligence methods (adaptive neuro fuzzy inference system, random forest, linear regression, classification regression tree, support vector k-nearest neighbour extreme learning machine) are compared this study using six different multinational datasets. The these evaluated the correlation coefficient, root mean square error, absolute percentage error criteria. Comparative results show that adaptive system (ANFIS) more successful all
منابع مشابه
Development of Artificial Neural Networks for Predicting Concrete Compressive Strength
This research work focuses on development of Artificial Neural Networks (ANNs) in prediction of compressive strength of concrete after 28 days. To predict the compressive strength of concrete six input parameters that are cement, water, silica fume, super plasticizer, fine aggregate and coarse aggregate are identified. A total of 639 different data sets of concrete was collected from the techni...
متن کاملthe effect of taftan pozzolan on the compressive strength of concrete in the environmental conditions of oman sea (chabahar port)
cement is an essential ingredient in the concrete buildings. for production of cement considerable amount of fossil fuel and electrical energy is consumed. on the other hand for generating one tone of portland cement, nearly one ton of carbon dioxide is released. it shows that 7 percent of the total released carbon dioxide in the world relates to the cement industry. considering ecological issu...
A COMPARATIVE STUDY OF TRADITIONAL AND INTELLIGENCE SOFT COMPUTING METHODS FOR PREDICTING COMPRESSIVE STRENGTH OF SELF – COMPACTING CONCRETES
This study investigates the prediction model of compressive strength of self–compacting concrete (SCC) by utilizing soft computing techniques. The techniques consist of adaptive neuro–based fuzzy inference system (ANFIS), artificial neural network (ANN) and the hybrid of particle swarm optimization with passive congregation (PSOPC) and ANFIS called PSOPC–ANFIS. Their perf...
متن کاملPrediction of Lightweight Aggregate Concrete Compressive Strength
Nowadays, the better performance of lightweight structures during earthquake has resulted in using lightweight concrete more than ever. However, determining the compressive strength of concrete used in these structures during their service through a none-destructive test is a popular and useful method. One of the main methods of non-destructive testing in the assessment of compressive strength...
متن کاملPREDICTION OF COMPRESSIVE STRENGTH AND DURABILITY OF HIGH PERFORMANCE CONCRETE BY ARTIFICIAL NEURAL NETWORKS
Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Gra?evinar
سال: 2021
ISSN: ['1849-1898', '1333-9095', '0350-2465']
DOI: https://doi.org/10.14256/jce.3066.2020